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On the Non-Dispersiveness of a Composite of
Non-Layered Dispersive Media

I. Introduction

A conjecture has recently been made [8] in the context of detection and
identification of visually obscured objects that a composite of many non-
layered dispersive material is effectively non-dispersive: somewhat akin to
the central limit theorem in statistics. This is the main motivation for the
following study.

Intrinsically a medium is either dispersive or non-dispersive. Since most
realistic media are conductive (and therefore dispersive) to some extent, we
will say, for our purpose here, a medium is non-dispersive, if it is appar-
ently or effectively non-dispersive. In particular, we will say a medium is
non-dispersive if waves reflected off the medium behave like those reflected
off a (theoretically) non-dispersive medium. Another characterization of
the non-dispersiveness of a medium can be defined in terms of transmitted
waves, although in practice (for example, in the setting of ground penetrat-
ing radars) they are not readily available.

This leads us to the question of how to characterize waves reflected off
non-dispersive media. For plane waves incident the reflection coefficient, the
ratio of the energy or amplitude in the incident wave to that in the reflected
wave, can be calculated. Moreover, it is a function only of the angle of
incident and the electromagnetic properties of the media and is therefore
frequency independent if the electromagnetic parameters are independent
of frequency. Thus for plane wave incident we have a way to characterize
waves reflecting off non-dispersive media. However, a plane wave (a 1-D
concept) is only an idealization that does not really exist. A line source (a
2-D concept) instead is more realistic. In this report we will discuss a way
to determine if a half-space medium is non-dispersive using information in
the reflected waves, when the incident wave is a line source.



Once we have identified the type of medium we have at hand, for ex-
ample, that it is non-dispersive, we can proceed to identify its electrical
parameters more easily. This approach can be generalized to conductive
media that are otherwise non-dispersive and may lead to a method that
would complement dielectric spectroscopy [4], an important component in
electromagnetic dosimetry.

In Section II of this report, we will describe briefly the Finite-Diflerence
Time-Domain (FDTD) computer program we used in this study. A measure
of non-dispersiveness is then proposed in Section III. Section IV summarises
simulations we have performed to validate this measure and also includes
an application to a non-layered dispersive medium.

II. FDTD

II-1. Overview

In recent years, FDTD has become an extremely popular and useful tool
to model transient electromagnetic propagation. We also used it here in
our study. The backbone of our computer program is the standard 2D Yee

FDTD code [10].

One of the drawbacks of FDTD was the need to use a large compu-
tation domain to eliminate artificial reflections from the boundary of the
computation domain. This translates to large computer memory require-
ment. With the discovery of Perfectly Matched Layer (PML) technology
[1] in 1994, this is no longer a problem. The basic idea of PML 1s to sur-
round the (not necessarily large) computation domain with a relatively thin
layer of judiciously chosen material (artificial or otherwise) that will absorb
the incoming waves and thus not reflect them back into the computation
domain. While the 2D problem we are considering here is not computer
memory bounded, nevertheless we have augmented our basic program with
PML in anticipation of its future extension to 3D. The version of PML we
have finally adopted is described in detail in [5] by Gedney. There are other




PML approaches one could adopt, for example the stretched coordinates
approach advanced by Chew [3]. However, Gedney’s approach seems to be
easier to implement. ‘

FDTD is a time domain approach. On the other hand, dispersive media,
are naturally characterized in the frequency domain. Hence it is not as
straight forward to model dispersive media in FDTD as it is in, for example,
an integral equation approach in the frequency domain. There are two
common approaches to handling dispersive media in a FDTD code: one is
a convolution approach [6] and the other is a auxiliary differential equation
approach [9]. We adopted the latter in our code.

In the rest of this section we will highlight some of the advanced features
of the code.

II-2. Maxwell’s Equations

The well-known Maxwell’s equations for the electromagnetic field propaga-
tion consist of six scalar equations involving the three components of the
E field and three components of the H field. Assuming the media are non-
magnetic, the main equation that contains possible dispersion parameters

is
VxH=D+J (1)
Or, in the frequency domain, assuming linear isotropic media, _
VxH=—jweeé (w)E (2)

where j is v/—1, é, is the relative complex permittivity, and ¢, is the free
space permittivity.

In a 2D problem, we assume all six components are independent of one
of the coordinates. This allows the six original equations to be separated
into two groups, each consists of three equations and involves exactly three
field components. Furthermore, one can solve each group separately. For
our purpose here, we considered only the group that consists of one E
component and two H components, the so-called TM case. For this case,
Equation (1) reduces to one scalar equation.

3



I1-3. PML

The PML used here is made up of a thin layer of an artificial material and
surrounds the actual computation domain (henceforth called the interior).
The “electromagnetic” field in the PML does not really satisfy the Maxwell’s
equations. For the ease of implementation, it is desirable that the field in the
PML and the field in the interior both satisfy equations of the same form.
This is accomplished by extending the form of the Maxwell’s equations in
the interior. In particular, Equation (2) is modified to

VxH=—jweé (w)SE (3)
where
S 1S
S = (__*'.s_i. 5;‘,3’) ,
s, = functions of space coordinates, i =1,2,3
s, = 8,4 J=4,5
6., = Kronecker delta

In the interior, we clearly must require S to be the identity matrix.
Hence, in the interior, s, = 1 for i = 1,2,3. This reduces Equation (3) to
Equation (2). In the PML, the function s (z,y, z) (and similarly for s, and
s,) may be chosen as

oz, Y, 2
(@u,2) = m(ay,2) + g0

where

_ ((z,y,2)\"
nx(m,y,z) - 1+K’max( d )

(o) = o ((E2D)

Here ((z,y, z) is the distance between the point (z,y,2) and the interior in
the x-direction and d is the thickness of the PML slab. Typical values for

the PML parameters k_, ,0_.,m, and d are

4




m = 1
max = 1
= 3.5

max

d = 10Az (Azis the FDTD grid size )

In most cases the performance of this PML is adequate, especially if
only the total field is sought. However, in some cases in which the desired
reflected waves from the medium, calculated by subtracting the incident
field from the total field, are small compared to the total field, the undesired
reflected waves from the boundary of the computation domain, which are
still relatively small compared to the total field, may no longer be negligible
compared to the desired reflected field. In those cases, one may try to fine
tune the PML parameters to reduce the undesired reflected waves further,
or, for expediency, enlarge the computation domain. As mentioned before,
this is generally not a severe problem for 2D problems, especially if one
is only interested in transient phenomena, since undesired reflected waves
originated from the boundary of the computation domain would not have
time to contaminate the desired reflected waves in the region of interest.

II-4. Dispersion

The computation in Equation (3) can be decomposed into three steps as
follow:

VxH = —jwS P
P = ¢(w)D (1)
D = ¢S,E

where S = S S,. In particular,



S, = (S—L(s)
S, '

In the conventional FDTD, one would update E using the latest val-
ues of H. Similarly, as suggested by the 3-step decomposition above, one
would update P,D, and E in turn using the latest values of H. Since
the dispersiveness of the medium only affects the middle equation in the
decomposition in Equation (4), we will only address the middle equation
here. Thus, given the latest values of P, we need a method to update D.
We implement this step via the auxiliary differential equation approach.
In particular, we use an approach similar to [Korner, 1997] who treated
Lorentz media. Here we consider a general Debye model of the form:

n «a

() = e 4% :
6 W) = etipst LT (5)

n+1
= > X (6)
k=0
where n = 3 and
Xo = €
.0,
X, = J
WE,
a
Xk+1 - 1-—;7',‘(,0, k-_—:l,...,n

We introduce the new variables 3, ; defined by
B.=x.D, k=0,...,n+1, i=1,2,3
where D, are the components of D. Then after some simple algebra, one

obtains for each i = 1,2,3 a system of n + 2 equations

n+1 :
p o= XPu Ng  k=1,..n+1
X =1
n+1

‘Di = (R— ;ﬁj,i)/Xov
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In the time domain, the first n + 1 equations (for each fixed ¢) become
a system of n + 1 ordinary differential equations in the n 4+ 1 unknowns
Bri, k=1,...,n+ 1. The solution of this system is then used to update
D., using the last equation.

II-5. The Line Source

To complete the description of the simulation method, we need to discuss
the generation of the incident wave. As mentioned above, we assume the
incident wave is generated by a line source. In particular, the line source
points into the plane and is parallel to the interface between free space and
medium, which is taken to be a half space. The line source is driven by
a Blackman-Harris pulse (type 1) with a typical central frequency of 600
MHz. Its time profile and amplitude spectrum (theoretical and calculated)
are shown in Figure 1 and Figure 2 respectively.

08

02 BH1: fcent = 6E+08

Source
g

. . . : : . . . .
© o1 o2 03 04 05 05 07 08 03 1
t{sec) 10

Figure 1: Line Source: Blackman-Harris Type 1.

III. A Simple Measure for Non-Dispersiveness

The reflected waves from a half space due to a line source located at the
origin, in the frequency domain, for most of the well-known cases have the




6 : N Fcent = 6.0E+08 Hz

Amplitude

--------- Theoretical
Calculated

Figure 2: Amplitude of the Fourier Transform of the Blackman-Harris Type 1.

representation [2]:

wp,I(w)

ER(w,m,y) = —TF(%%ZJ) (7)
e - [ bl on
¢pw) = wlkz+k,(y+2d)} (9)

k, = K —K (10)

Here (z,y) is the observation point, d; > 0 is the distance between the line
source and the half space (y < —d), I(w) is the spectrum of the line source,
and k, is the wave number of medium 1, which is taken to be free space

here.
The “reflection coefficient” R(w,k_,...) is generally a complicated func-

tion of the medium properties. In the simplest case of a homogeneous,
non-dispersive, non-conducting, non-magnetic half-space, R takes the fa-

miliar form

kl _kz
k, + k,

R= (11)

where k, is the wave number in the half space. Here R is independent of

frequency.




As in the plane wave case, it is natural to measure the non-dispersiveness
of a medium by the degree of frequency independence of R, e.g. the mean
squared error of |R| over a given frequency range. Unfortunately, R is not
easily recoverable from the reflected wave.

If R is hard to calculate, the next choice to measure the non-dispersiveness
of a medium is to use the integral of R or F(w,z,y). However, even in sim-
plest non-dispersive case, the integral would generally be frequency depen-
dent, as the frequency appears in the exponent inside the integral.

The ratio of reflected wave to incident wave used in the plane wave case
does not work either in the line source case as the ratio generally is also
dependent on frequency even when the half space is non-dispersive.

The analysis in the plane wave case is relatively simple because there a
quantity, the reflection coefficient, that (1) can be calculated and (2) has an
invariance property (here with respect to frequency) when the half space is
non-dispersive. For the line source case, we would also like to find a quantity
that we can calculate and which has some invariance property whenever the
half-space is non-dispersive.

We noticed that while the integral in Equation (8) is generally frequency
dependent, it has a special property when R is frequency independent,

namely .
F(w7$1’yl) = F(wjvmzvyz)

2
or, equivalently,
T
F("‘)amz?yz) :F(wm_zaxwyl) (12)
if (z,,y,) and (z,,y,) are judiciously chosen. In particular, if (z,,y,) and =z,
are given, then y, is the unique value such the three points: image of the
source, (z,,y1) and (z,,v,), are collinear. In other words, if a point (z,y,)
is given, then all the values of F on the line joining (z,,y,) and the image
of the source are related.

More generally, let A be any real number. A point ({,7) is said to be



A-related to a point (z,y) if |
¢ =((z,A) = Az, and
n=mn(y,A) = Ay+2d(x-1)

A point (¢, 7) is said to be related to a point (z,y) if it is A-related to (z,y)
for some A.

We will always assume without saying that the points in question are
always in free space, as it is here where the reflected waves are defined. This
will place some obvious restrictions on A. It readily follows that if (z,,y,)
is A-related to the point (z,y) and if the half space is non-dispersive, then

Flw,z,y) = F(w/)\,mx,yk)

Or equivalently,
F(w,z,,y,) = F(Qw,z,y) (13)

For example, if (z,,y,) is 2-related to (z,,y,), then

Flw,z,,y,) = F(2w,z,,y,).

An equivalent form of Equation (13) which is amenable to calculation is

ER(wa mmy,\) _ ER()“"” m,y)

— 14
I(w) A (Aw) (14)
where (z,,y,) is A-related to (z,y)
If we define .
| =B (%,7,Y)
Glw;z,y) := 2
( ) I1(%)
then a more symmetric form of Equation (14) is
G(w;z,y) = G(w;z,,4,) (15)

Again, Equation (15) holds if the half-space in non-dispersive.

We can now propose a measure M of effective non-dispersiveness based
only on the wave reflected from the half space. A natural measure is the

10




mean squared error between the two functions appearing in Equation (15),
obtained on two related observation points as defined above, over a given
frequency range depending on frequency content of the source:

M(E",z,y,)) = |7i_f—|/f C|G(fi2,9) = G2, 0)] df

In application, one basically needs to calculate the Fourier Transforms
of the reflections measured at two related points and divide the resulting
spectra by the spectrum of the source. For numerical consideration, the
range [f,, f,] is chosen where the spectrum of the source is significant, say,
over the band-width.

To avoid taking Fourier Transforms, a time domain version can be for-
mulated. In this version, two different but related sources are used twice.
The reflected waves measured at two related points again are related. Their
difference can again provide a measure of the effective non-dispersiveness
of the half space. In particular, for a given line source I(t), we define a

modified source I (t) by

L(®) = 210)

If we denote 7(t;z,y,I) as the reflection observed at the point (z,y) due
to a line source I(¢) located at the origin, then, assuming the half-space is
non-dispersive, we can readily show:

r(z,t;z,,y,1,) =r(z,tz,,y,, 1) (16)

Again, (z,,y,) and (z,,y,) are any two related points as described above.

IV. Numerical Experiments

IV-1. Theoretical: Non-Dispersive vs Dispersive Half Space

We investigated numerically the integral defined by F' on which our measure
is based. In particular, we want to know if the measure or equivalently F' can

11



distinguish simple dispersive media from non-dispersive ones. We studied a
simple dispersive half space consisting of only soil with 2.2% moisture. Its
relative complex permittivity, Equation (5), has the following parameters

[7]:

e =345 o,=159E—05
a, =12.38 7, =237E+ 06

o, =240 7,= 1.05E + 08
a, =027 T1,= 2.71F + 10

The dependence of its complex permittivity on frequency is depicted in
Figure 3 and in Figure 4. The relationship between €, in Equation (5) and
the real-valued quantities er and o in the figures are:

n O\wW
é (w)=er(w)+7 e(w) (17)
It readily follows that
er(w) = €, +Zl+(rw)
Q, T,
= + €, —
o(w) o, w Zl T+ (o)

Using this complex permittivity in R as defined in Equation (11), we
numerically integrated Equation (8) to obtain F(w,z,y) at two distinct but
related points, as described in Section III. The result is shown in Figure 5
for this dispersive case. The top plot displays F(w,z,y) and F(w,z,,y,),
where A has been chosen to be 2. If the half space were non-dispersive, we
should have, according to Equation (13), F(w,z,,y,) = F(Aw,z,y). The
bottom plot in Figure 5 tries to validate this relationship by displaying the
graphs of F(w,z,y) and F(%,z,,y,). The two should coincide if the half

12
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Figure 3: Er, the real part of the complex permittivity.
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Figure 5: The Dispersive Case. Top: |F(w,z,y)| and |F(w,z,,y,)|, A = 2. Bottom:
|F(w,z,y)| and [F(%,2,,9,)l-

space were non-dispersive. Clearly they do not. Hence, this half space
cannot be non-dispersive, as we expect.

Next, we apply the measure to a non-dispersive case. We repeat the
same calculation for an “averaged” 2.2% moisture non-conducting soil, i.e.,

€o=23.45 and o, =0

The result is shown in Figure 6 which displays the same quantities that were

shown in Figure (5). After scaling F(w,z,,y,) by the amount suggested by
Equation (13), the F-values at the two points coincide (bottom plot in
Figure 6), suggesting the half space is non-dispersive.

This result together with the previous one show the capability of the sim-
ple F(w,z,y)-based measure to resolve the question of non-dispersiveness.
However, it should be noted that F(w,z,y) is not directly measurable in

practice.
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IV-2. FDTD: Non-Dispersive vs Dispersive Half Space

Using the FDTD program outlined in Section II, we conducted two similar
numerical experiments based only on quantities that are directly measur-
able: namely, the reflected waves from the half space.

While F(w,z,y) can not be measured directly, it can be estimated (up to
a factor of w) by the quotient of the spectrum of the reflected wave measured
at (z,y) and that of the line source (see Equation (7)). We conducted two
numerical experiments: one with the non-dispersive half space and one with
the dispersive half space used in the previous sub-section. The results are
shown in Figure 7 and Figure 8

In these experiments, we have again taken A = z—z 2. The top plots in

Figure 7 and Figure 8 display the graphs of —E—i‘("—z—@ and —((ﬁy—*) The
bottom plots in each of these figures dlsplay the graph of the scaled quotient

-E—:\KI—A(—‘;—%Q and the (unscaled) quotient ———(I—(—?J—) According to Equation 14,
the latter two graphs should be the same if the half space is non-dispersive.

Our simulations indeed verify this.
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It is interesting to compare qualitatively the reflected waves measured
at the same point for the two cases. The graphs of the two reflected waves
are shown in Figure 9. They are not only qualitatively the same, but they
can hardly be distinguished from each other. (We have purposely plotted
fewer points on one of the graphs for clarity.) A portion of this plot has
been enlarged and is shown in Figure 10. Here we can start to discern
some systematic differences. This suggests that a criterion or a measure to
distinguish a non-dispersive medium from a dispersive medium must rely
on information in the reflected wave measured at more than one point. In
other words, it is not the shape of the reflected wave measured at one point
that will tell us something about the medium, but rather the relationship
between shapes of the reflected waves measured at different points that will.

x10”

| x Ave. 2.2% Soll
1 x x 2.2% Soil

IS
T

Reflections
~

_ab

6 . . : ) I . . . .
0 02 04 06 08 1 12 14 16 18 2
t{sec) x10°

Figure 9: Reflected waves measured at the same point, one for a non-dispersive half space
and one for a dispersive half space.

1V-3. FDTD: Dispersiveness of a Checker-Board Dispersive
Medium

In this experiment, we consider a half space made up of different dispersive
material arranged in a checker-board-like pattern as shown in Figure 11.
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Figure 10: A zoom-in version of reflected waves measured at the same point, one for a
non-dispersive half space and one for a dispersive half space.
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Figure 11: A Checker-Board-Like Half Space. Legends: F = Foliage, D = 0.0% Moisture
Soil, M = 2.2% Moisture Soil, W = Wood.
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Specifically, it consists of wood, foliage, and two types of soil, and are
arranged in some random order. The media parameters as a functions of
frequency are shown in Figure 3 and in Figure 4. The actual formulas for
generating these graphs can be found in [7].

The incident field E™ and the total field E, at two related points (z,y)
and (z,,v,) (as defined in Section III) are shown Figure 12 and Figure 13
respectively. Again, A is taken to be 2.

— e
Incident Wave Measured at 2 Points

02} /\ Line Source: BH1 /¢ = 6E+08

|

Incident Wave
o
pd
~

Py \/
-0021

Soil00, Seil22, Wood, Foliage

Dispersive Composite of :

004 . . . . . .
0 02 04 06 08 1 12 14
t{sec) x10°

Figure 12: Composite Half Space: Incident field at (z,y) and (z,,y,). A = 2.

The calculated reflected field E” at the same two points are shown in
Figure 14

R
As in the previous numerical experiment, the quantities —}W and
R

g(%(’%ﬁb—) are calculated and displayed in the top plot in Figure 15. Again

R
the bottom plot displays the graphs of the scaled quotient, E—/\(I’\(—%‘%l”l and the

R
(unscaled) quotient E(%(’;?’—ya—)
The results are comparable to that for the previous experiment involving
a simple dispersive half space. In particular, we cannot conclude from this

calculation that this composite half space is non-dispersive.
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Figure 13: Composite Half Space: Total field at (z,y) and (z,,9,).- A = 2.
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Figure 14: Composite Half Space: Reflected field at (z,y) and (z,,y,). A = 2.
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Figure 15: Quotients (see text) for Checker-board Medium.

IV. Conclusion

An effectively non-dispersive medium can be defined subjectively as one in
which reflected waves from the medium are characteristic of those from a
non-dispersive one. We have proposed a simple measure, based on the use of
a line source and the ensuing reflected waves from the medium (a half space),
to decide if the medium is non-dispersive. The measure has value is zero
when the medium is non-dispersive. We tested the measure on simulated
data and showed that it can distinguish a known dispersive medium from
a known non-dispersive medium, even though the reflected waves from the
two are apparently indistinguishable. In applying the measure to a problem
involving a fairly composite dispersive medium, we were able to conclude
definitively that the medium is dispersive. Since the proposed measure can
quantify a medium’s departure from non-dispersiveness, it may be used to
quantify its effective non-dispersiveness (a subjective notion) based on the
magnitude of the departure. Thus, while the composite dispersive medium
we considered is dispersive under our measure, it could well be considered
effectively non-dispersive in some applications, because the departure from
non-dispersiveness may not be deemed significant.
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Once we have determined a half space is non-dispersive, it is possible to
identify the medium parameters using least squares, cross-correlation, or
transform methods. We also believe the approach here can be extended to

a conductive half space. These are our next goals.
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